Home
Class 12
MATHS
lim(x->0+)(x e^(1/ x))/(1+e^(1/ x))...

`lim_(x->0+)(x e^(1/ x))/(1+e^(1/ x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr 0^+)(x e^(1//x))/(1+e^(1//x))=

lim_(x rarr 0) (e^(1/x)-1)/(e^(1/x)+1) =

(lim)_(x->0)[((1+x)^(1//x))/e]^(1//x)\ \

lim_(xrarr0)(e^(1//x)-1)/(e^(1//x)+1)=

Show that lim_(xto0) (e^(1//x)-1)/(e^(1//x)+1) does not exist.

lim_(x rarr0)(e^(1/x)-e^(-1/x))/(e^(1/x)+e^(-1/x))

The value of lim_(x rarr0)((e^(1/x^(2))-1)/(e^(1/x^(2)+1))) is :

Show that lim_(xto0^(-)) ((e^(1//x)-1)/(e^(1//x)+1)) does not exist.

Evaluate lim_(x rarr0)(e^((1)/(x))-1)/(e^((1)/(x))+1),x!=0

lim_(x rarr0)(e^((1)/(x))-1)/(e^((1)/(x))+1) is equal to