Home
Class 12
MATHS
Let X(n)={z=x+iy":"|z|^2le1/n} for all i...

Let `X_(n)={z=x+iy":"|z|^2le1/n}` for all integers `nge1` .
Then `overset(oo)underset(n=1)cap X_(n)` is___

A

a singleton set

B

not a finite set

C

an empty set

D

a finite set with more than one elements.

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Let X_n = {z= x+iy : absz^2 le 1/n] for all integers n ge1 Then cap_(n=1)^infty X_n is

Let f(1)=1 and f(n)=2overset(n-1)underset(r=1)sum f( r ) . Then overset(m) underset(n=1)sum f(n) is equal to

Let alpha,beta be the roots of x^(2)-x-1=0ands_(n)=alpha^(n)+beta^(n) for all integers nge1 . Then for every integer nge2 -

Let alpha, beta be the roots of x^(2)-x-1=0 and S_(n)=a^(n)+beta^(n) , for all integers n ge 1 . Then for every integer n gt 2 ,

Let alpha,beta be the roots of x^2-x-1=0 and S_n=alpha^n+beta^n , for all integers nge1 . Then for every integer nge2 ,

Prove that, underset(n=1)overset(oo)sum cot^(-1)(2n^(2))=(pi)/(4)

If x_1 , x_2 ,……. x_n are real quantities. Prove that 1/n overset(n)underset(i=1)sum x i^2 ge (1/n overset(n)underset(i=1)sum|x i|)^2

If x+(1/x)=2costheta then for any integer n, x^n+1/x^n=

If for all ninNN and nge1 , then (3^(2^(n))-1) is always divisible by

For every integer n, let a_n and b_n be real numbers Let function f : R rarr R be given by f(x)={(a_n+ sin pi x, "for" x in [2n, 2n+1]), (b_n+cos pi x, "for" x in (2n-1,2n)):} for all integers n If f is continuous, then which of the following hold(s) for all n ?