Home
Class 12
MATHS
{x in RR":"|cosx|gesinx}cap[0,(3pi)/(2)]...

`{x in RR":"|cosx|gesinx}cap[0,(3pi)/(2)]=`

A

`[0,(pi)/(4)]cup[(3pi)/(4),(3pi)/(2)]`

B

`[0,(pi)/(4)]cup[(pi)/2,(3pi)/(2)]`

C

`[0,(pi)/(4)]cup[(5pi)/(4),(3pi)/(2)]`

D

`[0,(3pi)/(2)]`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve |sinx+cosx|=|sinx|+|cosx|,x in [0,2pi] .

Obtain the maximum and minimum values of the function cos^(2)x+cosx+3 in the interval 0lexle(pi)/(2) .

Statement 1: Let f(x)=sin(cos x) \ i n \ [0,pi/2] . Then f(x) is decreasing in [0,pi/2] Statement 2: cosx is a decreasing function AAx in [0,pi/2]

A function f is continuous for all x (and not everywhere zero) such that f^2(x)=int_0^xf(t)(cost)/(2+sint)dtdot Then f(x) is (a) 1/2 1n((x+cosx)/2); x!=0 (b) 1/2 1n(3/(x+cosx)); x!=0 (c) 1/2 1n((2+sinx)/2); x!=npi,n in I (d) (cosx+sinx)/(2+sinx); x!=npi+(3pi)/4,n in I

If f(x)=sqrt(1-sin2x) , then f^(prime)(x) is equal to (a) -(cosx+sinx) ,for x in (pi/4,pi/2) (b) cosx+sinx ,for x in (0,pi/4) (c) -(cosx+sinx) ,for x in (0,pi/4) (d) cosx-sinx ,for x in (pi/4,pi/2)

tan^(-1)[(cosx)/(1+sinx)] is equal to pi/4-x/2,when (a) x in (-pi/2,(3pi)/2) (b) x in (-pi/2,pi/2) (c) x in (-pi/2,pi) (d) x in (-(3pi)/2,pi/2)

Evaluate : int_(0)^(pi)(x^2 sin 2x sin ((pi)/(2) cosx))/(2x-pi)dx

The number of distinct roots of abs((sinx, cosx, cosx),(cosx, sinx, cosx),(cosx, cosx, sinx))=0 in the interval -pi/4 le x le pi/4 is

If y=|cosx|+|sinx|,then(dy/dx)"at"x=(2pi)/3 is

underset(xrarr(pi)/(2))"lim"(cosx)/((pi)/(2)-x) =