Home
Class 12
MATHS
If f(x)=e^(px+q) , then show that ...

If `f(x)=e^(px+q)` , then show that
`f(a).f(b).f(c)=f(a+b+c).e^(2q)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=e^(px+q) ,then shoq that f(a).f(b).f(c)=f(a+b+c).e^(2q)

If f(x)=e^(px+q) [p and q are constants], show that, f(a).f(b).f(c)=f(a+b+c).e^(2q)

If y=f(x) =(px+q)/(rx-p), show that x = f(y).

If f(x)=a(x-b)/(a-b)+b.(x-a)/(b-a) then show that f(a)+f(b)=f(a+b).

If f(x)=a.(x-b)/(a-b)+b.(x-a)/(b-a) , show that, " "f(a)+f(b)=f(a+b) .

If f(x)=(x-1)/(x+1), show that (f(a)-f(b))/(1+f(a)f(b))=(a-b)/(1+ab)

If f(x)=log_e.(1+x)/(1-x) , show that f((2x)/(1+x^2))=2f(x) .

If f(x)=2^(ax+1) , the determine f(a)*f(b)*f(c) .

If e^(x)+e^(f(x))=e ,then for f(x) ___

If f(x)=e^(x+a) , g(x)=x^(b^2) and h(x)=e^(b^2x) ,show that (g[f(x)])/(h(x))=e^(ab^2)