Home
Class 12
MATHS
If a , b , c , are three unequal number ...

If a , b , c , are three unequal number such that a , b ,c are in A.P and `(b-a),(c-b) ,` a are in G.P then find a: b: c .

Text Solution

Verified by Experts

The correct Answer is:
`1:2:3`
Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are three unequal numbers such that a,b,c are in A.P. and (b-a) ,. (c-b) ,a are in G.P., then the value of a:b: c is-

Three unequal numbers a, b, c are in A.P. and a, (b-a), (c-a) are in G.P. Prove that, a : b : c = 1 : 3 : 5 .

Let a, b , c, p , q , r be positive real numbers such that a , b , c are in G.P. and a^p = b^q = c^r . Then

Let , a , b ,c ,d , p ,q ,r be positive real number such that a ,b , c are in G.P and a^(p)=b^(q)=c^(r) Then-

If a,b,c are in A.P .then 3^a , 3^b and 3^c are in

a ,b ,c x in R^+ such that a ,b ,and c are in A.P. and b ,c and d are in H.P., then a b=c d b. a c=b d c. b c=a d d. none of these

If three unequal positive numbers a, b, c are in G.P. then show that, a +c gt 2b .

If a , b , c are real numbers forming an A.P. and 3+a , 2+b , 3+c are in G.P. , then minimum value of ac is

If a,b, and c are in G.P then a+b,2b and b+ c are in

If a, b, c are in H.P., prove that, a(b+c), b(c+a), c(a+b) are in A.P.