Home
Class 12
MATHS
Value of i^(n)+i^(n+1)+i^(n+2)+i^(n+3)("...

Value of `i^(n)+i^(n+1)+i^(n+2)+i^(n+3)("when" i=sqrt(-1))-`

A

1

B

`-1`

C

0

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Value of i^n+i^(n+1)+i^(n+2)+i^(n+3) (where i=sqrt-1 )

The value of sum_(n=0)^(100)i^(n) equals (where i=sqrt(-1))

The value of sum_(n=1)^(13) (i^n+i^(n+1)) , where i =sqrt(-1) equals (A) i (B) i-1 (C) -i (D) 0

The value of sum_(n=1)^(13)(i^(n)+i^(n+1)),i=sqrt(-1) is

State which of the following is the value of (1+i+i^(2)+i^(3)+i^(4)) ["given", i = sqrt(-1)].

Find the value of i^n+i^(n+1)+i^(n+2)+i^(n+3) for all n in Ndot

Find the value of i^n+i^(n-1)+i^(n-2)+i^(n-3) for all n in Ndot

The value of underset(n=1)overset(13)sum(i^(n)+i^(n-1)),=i=sqrt(-1) is -

Prove that sum_(r=0)^n^n C_r(-1)^r[i+i^(2r)+i^(3r)+i^(4r)]=2^n+2^(n/2+1)cos(npi//4),w h e r ei=sqrt(-1)dot

Find the value of 1+i^2+i^4+i^6++i^(2n)