Home
Class 12
MATHS
i^(2)=-1,"then"underset(n=0)overset(225)...

`i^(2)=-1,"then"underset(n=0)overset(225)sumi^(n)` is -

A

0

B

`1+i`

C

`-1`

D

i

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+x^(2))^(n) = underset(r=0)overset(n)suma_(r)x^(r )= (1+x+x^(2)+x^(3))^(100) . If a = underset(r=0)overset(300)suma_(r) , then underset(r=0)overset(300)sumra_(r) is

The limit of underset(n=1)overset(1000)sum(-1)^(n)x^(n)" as "x to oo

The sum of the series underset(n+1)overset(oo)sumsin((n!pi)/(720)) is -

The value of underset(n=1)overset(13)sum(i^(n)+i^(n-1)),=i=sqrt(-1) is -

Let alpha,beta denote the cube roots of unity other then 1 and let s=underset(n=0)overset(302)sum(-1)^(n)((alpha)/(beta))^(n) . Then the value of s is -

If x = underset(n = 0)overset(oo)Sigma cos^(2n)theta, " " y = underset(n =0)overset(oo)Sigma tan^(2n) varphi and z = underset(n = 0)overset(oo)Sigma sin^(2n) theta tan^(2n) varphi (0 lt theta, varphi lt (pi)/(4)) then show that xyz = xy + yz - z.

Find the value underset(n rarr oo)("lim") underset(k =2)overset(n)sum cos^(-1) ((1 + sqrt((k -1) k(k + 1) (k + 2)))/(k(k + 1)))

Prove that underset(rles)(underset(r=0)overset(s)(sum)underset(s=1)overset(n)(sum))""^(n)C_(s) ""^(s)C_(r)=3^(n)-1 .

Prove that, underset(n=1)overset(oo)sum cot^(-1)(2n^(2))=(pi)/(4)

Which of the following integrals can be represented by underset(h to 0)limh underset(r=1)overset(n)sum r^(2)h^(2) where nh = 2 ?