Home
Class 12
MATHS
If y=x+x^(2)+x^(3)+....oo"where" |x|lt1"...

If `y=x+x^(2)+x^(3)+....oo"where" |x|lt1" prove that " x=(y)/(1+y)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=x+x^2+x^3+...oo where|x|<1,prove that x=y/(1+y)

If y=x^(x^(x^(...oo))) , then prove that, (dy)/(dx)=(y^(2))/(x(1-y log x)) .

If y=x+x^(2)+x^(3)+…oo where |x| lt 1 , then for |y| lt 1 the value of (dx)/(dy) is equal to -

If ye^(y)=x , prove that, (dy)/(dx)=(y)/(x(1+y)) .

If ye^y=x prove that (dy)/(dx)= y/(x(1+y))

If y=(x)/(x+2) prove that x(dy)/(dx)=y(1-y)

y=x^(x^(x^------infty) then prove that dy/dx=(y^2)/(x(1-ylogx))

If y=x+(1)/(x+(1)/(x+…oo)) , prove that (dy)/(dx)=(y)/(2y-x) .

If y=x^(1/3)-x^(-1/3) , prove that y^(3)+3y=x-(1)/(x)

If y^(1/3) + y^(-1/3) = 2x, prove that (x^2 - 1)y_2 + xy_1 = 9y .