Home
Class 12
MATHS
The sum 1xx1!+2xx2!+....+50xx50!...

The sum `1xx1!+2xx2!+....+50xx50!`

A

`51!`

B

`51!-1`

C

`51!+1`

D

`2xx51!`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum 1 xx 2 xx .^(n)C_(1) + 2 xx 3 xx .^(n)C_(2) + "….." + n xx (n+1) xx .^(n)C_(n) .

Find the sum 3/(1xx2)xx1/2+4/(2xx3)xx(1/2)^2+5/(3xx4)xx(1/2)^3+ to n terms.

Find the sum: 1-1/8+1/8xx3/(16)-(1xx3xx5)/(8xx16xx24)+...

The sum 2 xx ""^(40)C_(2) + 6 xx ""^(40)C_(3) + 12 xx ""^(40)C_(4) + 20 xx ""^(40)C_(5) + "…." + 1560 xx ""^(40)C_(40) is divisible by

The sum of 6.75 xx 10^3 and 4.52 xx 10^2 cm according to right significant is---

Find the sum to n terms of the series : 1xx2xx3 + 2xx3xx4 + 3xx4xx5 + ...

Find the sum to n terms of each of the series in 1xx 2 xx 3 + 2 xx 3 xx 4 + 3 xx 4 xx 5 + ...

Find the sum (1^4)/(1xx3)+(2^4)/(3xx5)+(3^4)/(5xx7)+......+(n^4)/((2n-1)(2n+1))

Find the sum sum_(r=1)^n r/((r+1)!) where n!= 1xx2xx3....n .

Show that (1xx2^2+2xx3^2+...+nxx(nxx1)^2)/(1^2xx2+2^2xx3+...+n^2xx(n+1))=(3n+5)/(3n+1)