Home
Class 12
MATHS
If P , Q ,R are angles of an isosceles ...

If P , Q ,R are angles of an isosceles traingle and `angleP=(pi)/(2)` then the value of
`("cos"(p)/(3)-i"sin"(p)/(3))^(3)+(cosQ+isinQ)(cosR-isinR)+(cosP-isinP)(cosQ-isinQ)(cosR-isinR)` then the value of

Promotional Banner

Similar Questions

Explore conceptually related problems

If P,Q,R are angles of an isosceles triangle and anglep=pi/2 then the value of (cos(p/3)-isin(p/3))^3+(cosQ+isinQ)(cosR-isinR)+(cosP_isinP)(cosQ-IsinQ)(cos R-isin R) is equal to

The value of cos^(-1)("cos"(5pi)/(3))+sin^(-1)("sin"(5pi)/(3)) is -

If (a+i)^2/(2a-1)=p+iq then find the values of (p^2+q^2)

If P,Q,R are angles of triangle PQR then the value of |{:(-1, cos R, cosQ),(cosR,-1,cosP),(cosQ, cosP,-1):}| is equal to

The base vertices of an isosceles triangle PQR are Q (1,3) and R(-2, 7). The vertex P can be-

If p_n =cos^n theta+sin ^ntheta then the value of 2P_6-3P_4+1 will be

For 0leP, Qle(pi/2) if sinP+cosQ=2 then the value of tan((P+Q)/2) is equal to

If x=(sin^3P)/cos^2P,y=cos^3P/sin^2P" and " sinP+cosP=1/2 then find the value of x + y.

For 0 le P, Q le (pi)/(2) , if sin P+cos Q=2 , then the value of tan((P+Q)/(2)) is equal to