Home
Class 12
MATHS
The value of |z|^(2)+|z-3|^(2)+|z-i|^(2)...

The value of `|z|^(2)+|z-3|^(2)+|z-i|^(2)` is minimum when z equals -

A

`2-(2)/(3)i`

B

`45+3i`

C

`1+(i)/(3)`

D

`1-(i)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of absz^2+abs(z-3)^2+abs(z-i)^2 is minimum when z equals

The least value of |z-3-4i|^(2)+|z+2-7i|^(2)+|z-5+2i|^(2) occurs when z=

The minimum value of |z-1|+|z-3| is

Find the minimum value of the expression E= |z|^2+ |z-3|^2 + |z- 6i|^2 (where z=x+iy, x,y in R )

If |z_1|=|z_2|=|z_3|=1 then value of |z_1-z_3|^2+|z_3-z_1|^2+|z_1-z_2|^2 cannot exceed

Find the minimum value of |z-1| if ||z-3|-|z+1||=2.

z=i^5 then the value of (z+z^2+z^3+z^4)

Given that x ,y ,z are positive real such that x y z=32. If the minimum value of x^2+4x y+4y^2+2z^2 is equal m , then the value of m//16 is.

Let z_(1)=2+3iandz_(2)=3+4i be two points on the complex plane . Then the set of complex number z satisfying |z-z_(1)|^(2)+|z-z_(2)|^(2)=|z_(1)-z_(2)|^(2) represents -

If 'z, lies on the circle |z-2i|=2sqrt2 , then the value of arg((z-2)/(z+2)) is the equal to