Home
Class 12
MATHS
Let z(1) be a fixed point on the circle ...

Let `z_(1)` be a fixed point on the circle of radius 1 centered at the origin in the Argand plane and `z_(1)ne+-1` . Consider an equilateral traingle inscribed in the circle with `z_(1),z_(2),z_(3)` as the vertices taken in the counter clockwise direction .Then `z_(1)z_(2)z_(3)` is equal to -

A

`z_(1)^(2)`

B

`z_(1)^(3)`

C

`z_(1)^(4)`

D

`z_(1)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Let z_1 be a fixed point on the circle of radius 1 centered at the origin in the Argand plane and z_1 ne+-1 consider an equilateral triangle inscribed in the circle with z_1,z_2,z_3 as the vertices taken in the counter clockwise directtion then z_1z_2z_3 is equal to

If A(z_1), B(z_2), C(z_3) are the vertices of an equilateral triangle ABC, then arg((z_2+z_3-2z_1)/(z_3-z_2)) is equal to

if z_1, z_2, z_3 are the vertices pf an equilateral triangle inscribed in the circle absz=1 and z_1=i , then

Let z_(1) and z_(2) be the roots of z ^(2)+az+b=0 . If the origin, z_(1) and z_(2) form an equilateral triangle. Then-

If z_0 is the circumcenter of an equilateral triangle with vertices z_1, z_2, z_3 then z_1^2+z_2^2+z_3^2 is equal to

If z_1,z_2,z_3 are any three roots of the equation z^6=(z+1)^6, then arg((z_1-z_3)/(z_2-z_3)) can be equal to

If the complex numbers z_(1),z_(2),z_(3) represents the vertices of an equilaterla triangle such that |z_(1)|=|z_(2)|=|z_(3)| , show that z_(1)+z_(2)+z_(3)=0

An equilateral triangle in the Argan plane has vertix as z_1 , z_2 and z_3 which are there complex no show that 1/(z_1-z_2)+1/(z_3-z_1)+1/(z_2-z_3)=0

If the vertices of an equilateral triangle be represented by the complex numbers z_(1),z_(2),z_(3) on the Argand diagram, then prove that, z_(1)^(2)+z_(2)^(2)+z_(3)^(2)=z_(1)z_(2)+z_(2)z_(3)+z_(3)z_(1).

Let z_(1),z_(2) be two fixed complex numbers in the Argand plane and z be an arbitrary point satisfying |z-z_(1)|+|z-z_(2)|=2|z_(1)-z_(2)| . Then the locus of z will be