Home
Class 12
MATHS
The minimum value of 2^(sinx)+2^(cosx) i...

The minimum value of `2^(sinx)+2^(cosx)` is -

A

`2^(1-(1)/(sqrt(2)))`

B

`2^(1+(1)/(sqrt(2)))`

C

`2^(sqrt(2))`

D

2

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of cos(cosx) is

The minimum value of ((3sin x-4cosx-10)(3sinx+4cosx-10)) is ________

If lambda be the minimum value of , y=(sinx+cosecx)^2+(cosx+secx)^2+(tanx+cotx)^2 where x∈R . Find lambda-6

Find the maximum and minimum value of 6sinx cosx +4cos2x

The minimum value of sqrt((3sin x-4cosx-10(3sinx+4cosx-1)) is ________

The maximum value of cos^2(45^0+x)+(sinx-cosx)^2 is ______

Find the maximum value of sinx +cosx and the value of x for which it is maximum.

If M be the maximum value of 1+2sinx+3cosx , then 3M-10 is equal to

If f(x)=2(7cosx+24sinx)(7sinx-24cosx), for every x in R , then maximum value of f(x)^(1/4) is_____

The minimum value of the function f(x)=sinx/(sqrt(1-cos^2x))+cosx/sqrt(1-sin^2x) whenever it is defined is