Home
Class 12
MATHS
Let S=(2n)/(1)C(0)+(2^(2)n)/(2)C(1)+(2^(...

Let `S=(2n)/(1)C_(0)+(2^(2)n)/(2)C_(1)+(2^(3)n)/(3)C_(2)+.....+(2^(n+1)n)/(n+1)C_(n)`. . Then S equals-

A

`(2^(n+1)-1)/(1)`

B

`(3^(n+1)-1)/(1)`

C

`(3^(n)-1)/(1)`

D

`(2^(n)-1)/(1)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Let S=(2)/(1)""^(n)C_(0)+(2^(2))/(2)""^(n)C_(1)+(2)/(3^(3))""^(n)C_(2)+…+(2^(n+1))/(n+1)""^(n)C_(n) . Then S equals-

Let S=2/1 ^nC_0+2^2/2 ^nC_1+2^3/3 ^nC_2+....+2^(n+1)/(n+1) ^nC_n . Then S equals

If "^(n)C_(0)-^(n)C_(1)+^(n)C_(2)-^(n)C_(3)+...+(-1)^(r )*^(n)C_(r )=28 , then n is equal to ……

(n+2)C_0(2^(n+1))-(n+1)C_1(2^(n))+(n)C_2(2^(n-1))-.... is equal to

Prove that , .^(2n)C_(n)=2^(n)(1.3.5...(2n-1))/(lfloorn)

Prove that (.^(2n)C_0)^2-(.^(2n)C_1)^2+(.^(2n)C_2)^2-..+(.^(2n)C_(2n))^2 = (-1)^n.^(2n)C_n .

Evaluate .^(n)C_(0).^(n)C_(2)+.^(n)C_(1).^(n)C_(3)+.^(n)C_(2).^(n)C_(4)+"...."+.^(n)C_(n-2).^(n)C_(n) .

Let a=3^(1//224)+1 and for all n ge 3 , let f(n)=""^(n)C_(0)a^(n-1)-""^(n)C_(1)a^(n-2)+""^(n)C_(2)a^(n-3)+...+(-1)^(n-1)*""^(n)C_(n-1)*a^(0). If the value of f(2016)+f(2017)= 3^(k) , the value of K is

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : (C_(1))/(C_(0))+(2C_(2))/(C_(1))+(3C_(3))/(C_(2))+....+(nC_(n))/(C_(n-1))=(n(n-1))/(2)

Find the sum of the series .^(n)C_(0)+2.^(n)C_(1)x+3.^(n)C_(2)x^(2)+....+(n+1).^(n)C_(n)x^(n) and hence show that , .^(n)C_(0)+2.^(n)C_(1)x+3.^(n)C_(2)x^(2)+....+(n+1)^(n)C_(n)=(n+2)2^(n-1)