Home
Class 12
MATHS
If alpha,beta are the roots x^(2)-px+1=...

If `alpha,beta` are the roots `x^(2)-px+1=0 and gamma "is a root of "x^(2)+px+1=0` ,then `(alpha+gamma)(beta+gamma)` is -

A

0 (zero)

B

1

C

`-1`

D

p

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta are the roots of x^2-px+1=0 and gamma is a root of x^2+px+1=0 , then (alpha+gamma)(beta+gamma) is

If alpha,beta be the roots x^2+px-q=0 and gamma,delta be the roots of x^2+px+r=0, p+rphi0 ,then ((alpha-gamma)(alpha-delta))/((beta-gamma)(beta-delta)) is equal to

If alpha,beta are the roots x^2+px+q =0 and gamma,delta are the roots of x^2+rx+s =0, evaluate (alpha-gamma)(alpha-delta)(beta-gamma)(beta-delta) in terms of p,q,r and s. Deduce the condition that the equation may have a common root.

If alpha,beta are roots of x^2+p x+1=0a n dgamma,delta are the roots of x^2+q x+1=0 , then prove that q^2-p^2=(alpha-gamma)(beta-gamma)(alpha+delta)(beta+delta) .

If alpha, beta are the roots of x^(2) - px + q = 0 and alpha', beta' are the roots of x^(2) - p' x + q' = 0 , then the value of (alpha - alpha')^(2) + (beta -alpha')^(2) + (alpha - beta')^(2) + (beta - beta')^(2) is

Let alpha , beta be the roots of x^2-x+p=0 and gamma,delta be the roots of x^2-4x+q=0 . If alpha,beta,gamma are in GP , then the integer values of p and q respectively are:

If alpha,beta are the roots of x^2+px+q =0 and also of x^(2n)+p^n x^n+q^n=0 and if alpha/beta,beta/alpha are root of x^n+1+(x+1)^n =0, then n is

If alpha, beta, gamma are the roots of x^3 + px + q = 0 , then alpha beta gamma = ___________ .

Let P (x)=x ^(6) -x ^(5) -x ^(3) -x ^(2) -x and alpha, beta, gamma, delta are the roots of the equation x ^(4) -x ^(3)-x ^(2) -1=0, then P (alpha ) + P (beta) +P (gamma) + P(delta)=

If alpha,beta,gamma are the roots of the equation x^3+p x^2+q x+r=0, then find he value of (alpha-1/(betagamma))(beta-1/(gammaalpha))(gamma-1/(alphabeta)) .