Home
Class 12
MATHS
The value of underset(n=1)overset(13)sum...

The value of `underset(n=1)overset(13)sum(i^(n)+i^(n-1)),=i=sqrt(-1)` is -

A

i

B

`i-1`

C

1

D

0

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(n=1)^(13)(i^(n)+i^(n+1)),i=sqrt(-1) is

The limit of underset(n=1)overset(1000)sum(-1)^(n)x^(n)" as "x to oo

The value of sum_(n=1)^(13) (i^n+i^(n+1)) , where i =sqrt(-1) equals (A) i (B) i-1 (C) -i (D) 0

Find the value of overset(10)underset(i=1)sum(10xxi) .

i^(2)=-1,"then"underset(n=0)overset(225)sumi^(n) is -

The sum of the series underset(n+1)overset(oo)sumsin((n!pi)/(720)) is -

Prove that, underset(n=1)overset(oo)sum cot^(-1)(2n^(2))=(pi)/(4)

The value of underset(n to oo)lim((n!)^((1)/(n)))/(n) is -

The value of sum_(r=1)^(5)(i^(r )-i^(r+1)) is, where i=sqrt(-1)

Find the value underset(n rarr oo)("lim") underset(k =2)overset(n)sum cos^(-1) ((1 + sqrt((k -1) k(k + 1) (k + 2)))/(k(k + 1)))