Home
Class 12
MATHS
1+.^(n)C(1)costheta+.^(n)C(2)cos2theta+....

`1+.^(n)C_(1)costheta+.^(n)C_(2)cos2theta+...+.^(n)C_(n)cosntheta`equals

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of .^(n)C_(1)+.^(n+1)C_(2)+.^(n+2)C_(3)+"….."+.^(n+m-1)C_(m) is equal to

If (costheta +isintheta)(cos2theta +isin2theta).....(cosntheta + isinntheta) = 1 then the value of theta is:

If S_(n) = (.^(n)C_(0))^(2) + (.^(n)C_(1))^(2) +... +(.^(n)C_(n))^(n) , then maximum value of [(S_(n+1))/(S_(n))] is "_____" . (where [*] denotes the greatest integer function)

If a variable x takes values 0,1,2,..,n with frequencies proportional to the binomial coefficients .^(n)C_(0),.^(n)C_(1),.^(n)C_(2),..,.^(n)C_(n) , then var (X) is

If "^(n)C_(0)-^(n)C_(1)+^(n)C_(2)-^(n)C_(3)+...+(-1)^(r )*^(n)C_(r )=28 , then n is equal to ……

Find the sum of the series .^(n)C_(0)+2.^(n)C_(1)x+3.^(n)C_(2)x^(2)+....+(n+1).^(n)C_(n)x^(n) and hence show that , .^(n)C_(0)+2.^(n)C_(1)x+3.^(n)C_(2)x^(2)+....+(n+1)^(n)C_(n)=(n+2)2^(n-1)

If ninNN , then by principle of mathematical induction prove that, .^(n)C_(0)+.^(n)C_(1)+.^(n)C_(2)+ . . .+.^(n)C_(n)=2^(n)(ninNN)

Using mathematical induction prove that, costheta+cos2theta+ . . .+cosntheta=("cos"(n+1)/(2)theta"sin"(ntheta)/(2))/("sin"(theta)/(2)) .

Prove that .^(n)C_(0) +5 xx .^(n)C_(1) + 9 xx .^(n)C_(2) + "…." + (4n+1) xx .^(n)C_(n) = (2n+1) 2^(n) .