Home
Class 12
MATHS
If omega is an imaginary cube root of un...

If `omega` is an imaginary cube root of unity then the value of
`(2-omega),(2-omega^(2))+2(2-omega)(3-omega^(2))+....+(n-1)(n-omega)(n-omega^(2))` is

A

`(n^(2))/(4)(n+1)^(2)-n`

B

`(n^(2))/(4)(n+1)^(2)+n`

C

`(n^(2))/(4)(n+1)^(2)`

D

`(n^(2))/(4)(n+1)^(2)-n`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is an imaginary cube root of unity. Find the value of the expression 1(2- omega)(2-omega^(2))+2(3-omega) +...+ (n-1)(n-omega)(n-omega^(2)) .

If omega is an imaginary cube root of unity, then the value of (1+ omega- omega^(2))(1- omega + omega ^(2)) is-

If omega be the imaginary cube root of unity then the value of omega^(241) will be

If omega is a complex cube root of unity, then the value of (2-omega) (2-omega ^(2)) (2- omega ^(10)) (2- omega ^(11)) will be-

Let omega be an imaginary cube root of unity, then the value of 2 (omega + 1) (omega^(2) +1) +3 (2 omega +1) (2 omega^(2) +1)…+ (n+1) (n omega +1) (n omega ^(2) +1) is-

If omega is a cube root of unity, then find the value of the following: (1-omega)(1-omega^2)(1-omega^4)(1-omega^8)

If omega is a non-ral cube root of unity then the value of (a+b) (a+b omega) (a+b omega ^(2)) is-

If omega be an imaginary cube root of unity, show that, (1-omega)(1-omega^(2))(1-omega^(4))(1-omega^(5))=9

If omega be the imaginary cube root of 1, then the value of (3+omega+3omega^(2))^(4) will be

omega is an imagianry cube root of unity, show that, (1-omega^(2))(1-omega^(4))(1-omega^(8))(1-omega^(10))=9