Home
Class 12
MATHS
If z=sintheta-icostheta then for any int...

If `z=sintheta-icostheta` then for any integer n

A

`z^(n)+(1)/(z^(n))=2cos((npi)/(2)-ntheta)`

B

`z^(n)+(1)/(z^(n))=2sin((npi)/(2)-ntheta)`

C

`z^(n)-(1)/(z^(n))=2isin(ntheta-(npi)/(2))`

D

`z^(n)-(1)/(z^(n))=2icos((npi)/(2)-ntheta)`

Text Solution

Verified by Experts

The correct Answer is:
A, C
Promotional Banner

Similar Questions

Explore conceptually related problems

If z = sin theta -i cos theta then for any integer n,

If x+(1/x)=2costheta then for any integer n, x^n+1/x^n=

If x + 1/x = 2cos theta , then for any integer n, x^(n) + 1/x^(n) =

Let A ,B be two matrices such that they commute, then for any positive integer n , (i) A B^n=B^n A (ii) (A B)^n =A^n B^n

The expression cos3theta+sin3theta+(2sin2theta-3)(sintheta-costheta) is positive for all theta in (a) (2npi-(3pi)/4,2npi+pi/4),n in Z (b) (2npi-pi/4,2npi+pi/6),n in Z (c) (2npi-pi/3,2npi+pi/3),n in Z (d) (2npi-pi/4,2npi+(3pi)/4),n in Z

If I_(n)=int_(0)^((pi)/(4))tan^(n)thetad theta , for any positive integer n, then the value of n(I_(n-1)+I_(n+1)) is -

The normal to the curve x=a(costheta+thetasintheta),y=a(sintheta-thetacostheta) at any point theta is such that

If sintheta+cosectheta=2 , the value of sintheta-cosectheta will be

If A(theta)=[[sintheta, icostheta], [icostheta, sintheta]] , then which of the following is not true? (a) A(theta)^(-1)=A(pi-theta) (b) A(theta)+A(pi+theta) is a null matrix (c) A(theta)^(-1) is invertible for all theta in R (d) A(theta)^(-1)=A(-theta)

Prove by mathematical induction that for any positive integer n , 3^(2n)-1 is always divisible by 8 .