Home
Class 12
MATHS
If n is a positive integer , then (sqrt(...

If n is a positive integer , then `(sqrt(3)+1)^(2n)-(sqrt(3)-1)^(2n)` is -

A

an even positive integer

B

a rational number other than positive integers

C

an irrational number

D

an odd positive integer.

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If n is a possible integer, then (sqrt3+1)^(2n)-(sqrt3-1)^(2n) is

If n is a positive integer, then, (1+isqrt3)^n+(1-isqrt3)^n=

If n is a positive integer and U_(n) = (3 + sqrt5)^(n) + (3 - sqrt5)^(n) , then prove that U_(n + 1) = 6U_(n) - 4U_(n -1), n ge 2

If i=sqrt-1 and n is a positive integer, then i^(n)+i^(n+1)+i^(n+3_ is equal to

If n (> 1)is a positive integer, then show that 2^(2n)- 3n - 1 is divisible by 9.

If n is a positive integer, prove that 1-2n+(2n(2n-1))/(2!)-(2n(2n-1)(2n-2))/(3!)+.......+(-1)^(n-1)(2n(2n-1)(n+2))/((n-1)!)= (-1)^(n+1)(2n)!//2(n !)^2dot

If n is positive integer and "cos" (pi)/(2n)+"sin" (pi)/(2n) =(sqrt(n))/(2) , then prove that 4 le n le 8

If n is a positive integer then using the indentiy (1+x)^(n)=(1+x)^(3)(1+x)^(n-3) , prove that ""^(n)C_(r)=""^(n-2)C_(r)+3*""^(n-3)C_(r-1)*""^(n-3)C_(r-2)+""^(n-3)C_(r-3)

If n is a positive integer, show that, (n+1)^(2) + (n+2)^(2) + …+ 4n^(2) = (n)/(6)(2n+1)(7n+1)

If n is a positive integer (gt1) , show that, (4^(2n+2)-15n-16) is always divisible by 225.