Home
Class 12
MATHS
Let S=S(1)capS(2)capS(3)," where " S(1)=...

Let `S=S_(1)capS_(2)capS_(3)," where " S_(1)={zin CC:|z|lt4}, S_(2)={z inCC: "Im" [[(z-1)+sqrt(3i))/(1-sqrt(3i))]gto} S_(3)={z in CC:Rezgt0}`
Area of s =

A

`(10pi)/(3)`

B

`(20pi)/(3)`

C

`(16pi)/(3)`

D

`(32pi)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Let S=S_(1)capS_(2)capS_(3)," where " S_(1)={zin CC:|z|lt4}, S_(2)={z inCC: "Im" [[(z-1)+sqrt(3i))/(1-sqrt(3i))]gto} S_(3)={z in CC:Rezgt0} underset(z inS)"min"|1-3i-z| =

Let w=(sqrt(3)+i)/(2)andp={w^(n):n =1 , 2 , 3 , .....}. "Further " H_(1)={z in CC :Rezgt(1)/(2)}andH_(2)={zin CC:Rezlt(-1)/(2)} , where CC is the set of all complex numbers , If z_(1)inpcapH_(1),z_(2)inpcapH_(2) andO " represents the orgin,then " anglez_(1)Oz_(2) =

If z =(-2)/(1+sqrt3i), then the value of arg(z) is-

If z=(1+i)(1+sqrt 3i)^2/(1-i) , then argz equal

Values (s)(-i)^(1/3) is/are (sqrt(3)-i)/2 b. (sqrt(3)+i)/2 c. (-sqrt(3)-i)/2 d. (-sqrt(3)+i)/2

If z=((sqrt(3))/2+i/2)^5+((sqrt(3))/2-i/2)^5 , then prove that I m(z)=0.

The complex number, z=((-sqrt(3)+3i)(1-i))/((3+sqrt(3)i)(i)(sqrt(3)+sqrt(3)i))

If S={x in N :2+(log)_2sqrt(x+1)>1-(log)_(1/2)sqrt(4-x^2)} , then S={1} (b) S=Z (d) S=N (d) none of these

If z_(1)=4-3iand z_(2)=-12+5i, "show that", |z_(1)/z_(2)|=|z_(1)|/|z_(2)|

If z_(1)=-3+4i and z_(2)=12-5i, "show that", bar(z_(1)+z_(2))=bar(z_(1))+bar(z_(2))