Home
Class 12
MATHS
Let S=S(1)capS(2)capS(3)," where " S(1)=...

Let `S=S_(1)capS_(2)capS_(3)," where " S_(1)={zin CC:|z|lt4}, S_(2)={z inCC: "Im" [[(z-1)+sqrt(3i))/(1-sqrt(3i))]gto} S_(3)={z in CC:Rezgt0}`
`underset(z inS)"min"|1-3i-z|`=

A

`(2-sqrt(3))/(2)`

B

`(2+sqrt(3))/(2)`

C

`(3-sqrt(3))/(2)`

D

`(3-sqrt(3))/(2)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Let S=S_(1)capS_(2)capS_(3)," where " S_(1)={zin CC:|z|lt4}, S_(2)={z inCC: "Im" [[(z-1)+sqrt(3i))/(1-sqrt(3i))]gto} S_(3)={z in CC:Rezgt0} Area of s =

If z =(-2)/(1+sqrt3i), then the value of arg(z) is-

Let z_(1) =2-i, z_(2) =-2 + i , Find (Re(z_(1)z_(2))/barz_(1))

If z=((sqrt(3)+i)^(17))/((1-i)^(50)) , then find a m p(z)

If z=(1+i)(1+sqrt 3i)^2/(1-i) , then argz equal

Let w=(sqrt(3)+i)/(2)andp={w^(n):n =1 , 2 , 3 , .....}. "Further " H_(1)={z in CC :Rezgt(1)/(2)}andH_(2)={zin CC:Rezlt(-1)/(2)} , where CC is the set of all complex numbers , If z_(1)inpcapH_(1),z_(2)inpcapH_(2) andO " represents the orgin,then " anglez_(1)Oz_(2) =

If z_(1) =2 -i, z_(2)=1+i , find |(z_(1) + z_(2) + 1)/(z_(1)-z_(2) + 1)|

If (1+i)^2 /(3 - i) =Z , then Re(z) =

The complex number, z=((-sqrt(3)+3i)(1-i))/((3+sqrt(3)i)(i)(sqrt(3)+sqrt(3)i))

If z_(1)=4-3iand z_(2)=-12+5i, "show that", bar(z_(1)z_(2))=bar(z_(1))*bar(z_(2))