Home
Class 12
MATHS
If y=10^((1)/(1-log(10)x)) and z=10^((1)...

If `y=10^((1)/(1-log_(10)x))` and `z=10^((1)/(1-log_(10)y))` show that `x=10^((1)/(1-log_(10)z))`

Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    CHHAYA PUBLICATION|Exercise Short Answer Type Question|38 Videos
  • LINEAR PROGRAMMING GRAPHICAL METHOD

    CHHAYA PUBLICATION|Exercise Assertion Reason Type|2 Videos
  • MAPPING OR FUNCTION

    CHHAYA PUBLICATION|Exercise Sample questions (Assertion -Reason type C)|3 Videos

Similar Questions

Explore conceptually related problems

If y = a^(1/(1-log_(a)x)) and z = a^(1/(1-log_(a)y)) , then show that x = a^(1/(1-log_(a)z))

If y=a^(1/(1-(log)_a x)) and z=a^(1/(1-(log)_a y)) ,then prove that x=a^(1/(1-(log)_a z))

Solve (x+1)^(log_(10) (x+1))=100(x+1)

Solve : (1)/(log_(x)10)+2=(2)/(log_(0.5)(10))

If (d)/(dx)(log_(e)x)=(1)/(x) then (d)/(dx)(log_(10)x)=

If x=log_(a)(bc),y=log_(b)(ca) and z=log_(c )(ab) show that x+y+z+2=xyz

Show that log_(2)10-log_(8)125 =1

If f(x) = |log_10x| then at x=1

Prove that 1/3<(log)_(10)3<1/2dot

In a binomial distribution B(n , p=1/4) , if the probability of at least one success is greater than or equal to 9/(10) , then n is greater than (1) 1/((log)_(10)^4-(log)_(10)^3) (2) 1/((log)_(10)^4+(log)_(10)^3) (3) 9/((log)_(10)^4-(log)_(10)^3) (4) 4/((log)_(10)^4-(log)_(10)^3)