Home
Class 12
MATHS
If x=1 +log(a)(bc) , y=1 +log(b)(ca) and...

If x=1 +`log_(a)(bc) , y=1 +log_(b)(ca)` and z=1+`log_(c )(ab)` prove that xy+yz+zx=xyz

Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    CHHAYA PUBLICATION|Exercise Short Answer Type Question|38 Videos
  • LINEAR PROGRAMMING GRAPHICAL METHOD

    CHHAYA PUBLICATION|Exercise Assertion Reason Type|2 Videos
  • MAPPING OR FUNCTION

    CHHAYA PUBLICATION|Exercise Sample questions (Assertion -Reason type C)|3 Videos

Similar Questions

Explore conceptually related problems

If x=log_(a)(bc),y=log_(b)(ca) and z=log_(c )(ab) show that x+y+z+2=xyz

If x = log_(a)^(bc) , y = log_(b)^(ca) and z = log_(c)^(ab) then show that frac(1)(x+1)+frac(1)(y+1)+frac(1)(z+1) = 1 , [abc ne 1]

If x = log_(2a)^(a) , y = log_(3a)^(2a) and z = log_(4a)^(3a) show that xyz = 2yz - 1.

If x = log_(a)(bc), y = log_(b)(ca), z = log_(c)(ab) , then find 1/(x+1) + 1/(y+1) + 1/(z+1)

If x = log_(2a)a, y = log_(3a)2a , z = log_(4a)3a , then show that xyz + 1 = 2yz .

Simplify : 1/(log_(ab)(abc)) + 1/(log_(bc)(abc))+1/(log_(ca)(abc))

If x = log_(c ) b + log_(b)c , y=log_(a)c + log_(c ) a, z=log_(b)a+log_(a)b , then show that x^(2) + y^(2) + z^(2) - 4 = xyz .

If (log x)/(b-c) = (log y)/(c-a) = (log z)/(a-b) , then prove that x^(b+c).y^(c+a).z^(a+b) = 1

If log_(p)x=a and log_(q)x=b prove that log_(p/q)x=(ab)/(a-b)

Prove log_(b)b = 1