Home
Class 12
MATHS
Solve : (iii) 4^(log(9^3))+9^(log(2^4)...

Solve :
(iii) `4^(log_(9^3))+9^(log_(2^4))=10^(log_(x^83))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    CHHAYA PUBLICATION|Exercise Short Answer Type Question|38 Videos
  • LINEAR PROGRAMMING GRAPHICAL METHOD

    CHHAYA PUBLICATION|Exercise Assertion Reason Type|2 Videos
  • MAPPING OR FUNCTION

    CHHAYA PUBLICATION|Exercise Sample questions (Assertion -Reason type C)|3 Videos

Similar Questions

Explore conceptually related problems

Solve : (iv) x^(log_(2)a)+a^(log_(2)x)=2a^(2) .

Solve for x: log_(4) log_(3) log_(2) x = 0 .

Solve : (iv) log_(10)x - log_(10)sqrt(x) = 2/(log_(10)x)

Solve x^(log_(4) x)=2^(3(log_(4)x+3) .

Solve log_(4)(x-1)=log_(2)(x-3)

Solve : (1)/(log_(x)10)+2=(2)/(log_(0.5)(10))

Solve : (ii) log_(x)2log_(x/16)2 = log_(x/64)2 .

Prove that : (vi) log_(a)x + log_(a^2)x^(2) + log_(a^3)x^(3) + ………….+ log_(a^n)x^(n) = log_(a)x^(n)

Calculate : (iii) log_(3)(sqrt6)+log_(3)(sqrt(2/3))-log_(3)log_(3)(9)

Solve : (i) log_(8)[log_(2){log_(3)(4^(x)+17)}] = 1/3