Home
Class 12
MATHS
If the coeffcients of four successive te...

If the coeffcients of four successive terms in the espansion of `(1+x)^(n)"be " a_(1),a_(2),a_(3)anda_(4)` respectively , show that ,
`(a_(1))/(a_(1)+a_(2))+(a_(3))/(a_(3)+a_(4))=2.(a_(2))/(a_(2)+a_(3))`

Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CHHAYA PUBLICATION|Exercise EXERCISE 8 (Multiple Choice Type Questions)|14 Videos
  • BINOMIAL THEOREM

    CHHAYA PUBLICATION|Exercise EXERCISE (Very short answer Type Questions )|30 Videos
  • BINOMIAL DISTRUTION

    CHHAYA PUBLICATION|Exercise ASSERTION-REASON TYPE|2 Videos
  • CALCULUS

    CHHAYA PUBLICATION|Exercise JEE Advanced Archive (2014)|2 Videos

Similar Questions

Explore conceptually related problems

If the coefficients of the consicutive four terms in the expansion of (1+x)^(n)" be "a_(1),a_(2),a_(3)and a_(4) respectively , show that , (a_(1))/(a_(1)+a_(2))+(a_(3))/(a_(3)+a_(4))=2.(a_(2))/(a_(2)+a_(3)).

If a_(1), a_(2), a_(3),…, a_(n) be in A.P. Show that, (1)/(a_(1)a_(2)) + (1)/(a_(2)a_(3)) +….+(1)/(a_(n-1)a_(n)) = (n-1)/(a_(1)a_(n))

If a_(1),a_(2),a_(3)anda_(4) be the coefficients of four consecutive terms in the expansion of (1+x)^(n) , then prove that (a_(1))/(a_(1)+a_(2)),(a_(2))/(a_(2)+a_(3))and(a_(3))/(a_(3)+a_(4)) are in A.P.

If a_(1), a_(2), a_(3), …., a_(n) are in H.P., prove that, a_(1)a_(2) + a_(2)a_(3) + a_(3)a_(4) +…+ a_(n-1)a_(n) = (n-1)a_(1)a_(n)

If a_(1), a_(2) , a_(3),…,a _(n+1) are in A. P. then the value of (1)/(a _(1)a_(2))+(1)/(a_(2)a_(3))+(1)/(a_(3)a_(4))+...+(1)/(a_(n)a_(n+1)) is-

If a_(1) ge 0 for all t and a_(1), a_(2), a_(3),….,a_(n) are in A.P. then show that, (1)/(a_(1)a_(3)) + (1)/(a_(3)a_(5)) +...+ (1)/(a_(2n-1).a_(2n+1)) = (n)/(a_(1)a_(2n+1))

If a_(r) be the coefficient of x^(r) in the expression of (1+bx^(2)+cx^(3))^(n),"then prove that" , a_(3)=nc

If a_(1),a_(2)a_(3),….,a_(15) are in A.P and a_(1)+a_(8)+a_(15)=15 , then a_(2)+a_(3)+a_(8)+a_(13)+a_(14) is equal to

Let a_(1),a_(2),a_(3),….,a_(4001) is an A.P. such that (1)/(a_(1)a_(2))+(1)/(a_(2)a_(3))+...+(1)/(a_(4000)a_(4001))=10 a_(2)+a_(4000)=50 . Then |a_(1)-a_(4001)| is equal to

If a_(1), a_(2), a_(3),…, a_(2k) are in A.P., prove that a_(1)^(2) - a_(2)^(2) + a_(3)^(2) - a_(4)^(2) +…+a_(2k-1)^(2) - a_(2k)^(2) = (k)/(2k-1)(a_(1)^(2) - a_(2k)^(2)) .