Home
Class 12
MATHS
Find the sum of the series .^(n)C(0)+2...

Find the sum of the series
`.^(n)C_(0)+2.^(n)C_(1)x+3.^(n)C_(2)x^(2)+....+(n+1).^(n)C_(n)x^(n)`
and hence show that ,
`.^(n)C_(0)+2.^(n)C_(1)x+3.^(n)C_(2)x^(2)+....+(n+1)^(n)C_(n)=(n+2)2^(n-1)`

Text Solution

Verified by Experts

The correct Answer is:
`(1+x)^(n-1)[(n+1)x+1]`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams (Multiple Correct Answers Type)|5 Videos
  • BINOMIAL THEOREM

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams (Integer Answer Type)|5 Videos
  • BINOMIAL THEOREM

    CHHAYA PUBLICATION|Exercise EXERCISE ( short answer Type Questions )|53 Videos
  • BINOMIAL DISTRUTION

    CHHAYA PUBLICATION|Exercise ASSERTION-REASON TYPE|2 Videos
  • CALCULUS

    CHHAYA PUBLICATION|Exercise JEE Advanced Archive (2014)|2 Videos

Similar Questions

Explore conceptually related problems

The value of the sum (.^(n)C_(1))^(2)+(.^(n)C_(2))^(2)+(.^(n)C_(3))^(2)+....+(.^(n)C_(n))^(2) is -

Show that .^(n)C_(r)+.^(n-1)C_(r-1)+.^(n-1)C_(r-2)=.^(n+1)C_(r) .

The sum of the series 1+(1)/(2)""^(n)C_(1)+(1)/(3)""^(n)C_(2)+…+(1)/(n+1)""^(n)C_(n) is equal to-

If .^(n)C_(3)=.^(n)C_(2) , then find .^(n)C_(2) .

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : 3.^(n)C_(0)-8.^(n)C_(1)+13.^(n)C_(2)-18.^(n)C_(3)+....."up to"(n+1)"terms" =0

If (1+x)^(n)=^(n)C_(0)+^(n)C_(1)x+^(n)C_(2)x^(2)+…+^(n)C_(n)x^(n) , prove that, nC_(0) +2^(n)C_(1)+3^(n)C_(2)+…+(n+1)^(n)C_(n)=(n+2)*2^(n-1) .

The value of (.^(n)C_(0))/(n)+(.^(n)C_(1))/(n+1)+(.^(n)C_(2))/(n+2)+"..."+(.^(n)C_(n))/(2n)

Find the sum .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "……" + n xx .^(n)C_(n) .

Prove that .^(n)C_(0) +5 xx .^(n)C_(1) + 9 xx .^(n)C_(2) + "…." + (4n+1) xx .^(n)C_(n) = (2n+1) 2^(n) .

Find the sum 1 xx 2 xx .^(n)C_(1) + 2 xx 3 xx .^(n)C_(2) + "….." + n xx (n+1) xx .^(n)C_(n) .

CHHAYA PUBLICATION-BINOMIAL THEOREM -EXERCISE ( Long answer Type Questions )
  1. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+.....+C(n)x^(n) then show :

    Text Solution

    |

  2. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+.....+C(n)x^(n) then show :

    Text Solution

    |

  3. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+.....+C(n)x^(n) then show :

    Text Solution

    |

  4. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+.....+C(n)x^(n) then show : 3.^(...

    Text Solution

    |

  5. The power of a of 10thterm in the extension (a+2b)^20-

    Text Solution

    |

  6. (1-x)^(n)=C(0)-C(1)x+C(2)x^(2)-C(3)x^(3)+...+C(r)(-1)^(r)x^(r)+.....+(...

    Text Solution

    |

  7. Find the sum of the series .^(n)C(0)+2.^(n)C(1)x+3.^(n)C(2)x^(2)+......

    Text Solution

    |

  8. Show : x-^(n)C(1)(x+y)+^(n)C(2)(x+2y)-^(n)C(3)(x+3y)+....=0

    Text Solution

    |

  9. Show : 2^(n)-(n)/(1!).2^(n-1)+(n(n-1))/(2!).2^(n-2)-....+(-1)^(n)=1

    Text Solution

    |

  10. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+...+C(n)x^(n) "show that ", (1)/(1...

    Text Solution

    |

  11. Find numerically the greatest terms in the following expansion : (1...

    Text Solution

    |

  12. Find numerically the greatest terms in the following expansion : (1-...

    Text Solution

    |

  13. Find numerically the greatest terms in the following expansion : (2...

    Text Solution

    |

  14. Find numerically the greatest terms in the following expansion : [1...

    Text Solution

    |

  15. Find numerically the greatest terms in the following expansion : {(2x...

    Text Solution

    |

  16. Find numerically the greatest terms in the following expansion (ax-...

    Text Solution

    |

  17. Find numerically the greatest cofficients in the following expansions ...

    Text Solution

    |

  18. Find numerically the greatest cofficients in the following expansions ...

    Text Solution

    |

  19. Which terms in the expansion of (x+(1)/(2x))^(3n) has the greatest coe...

    Text Solution

    |

  20. In the expansion of the expression (a+x)^(15) ,if the eleventh term i...

    Text Solution

    |