Home
Class 12
MATHS
An equation a(0)+a(1)x+a(2)x^(2)+....+a(...

An equation `a_(0)+a_(1)x+a_(2)x^(2)+....+a_(99)x^(99)+x^(100)=0" has roots "^(99)C_(0),^(99)C_(1),^(99)C_(2),...,^(99)C_(99)`
The value of `a_(99)` is equal to -

A

`2^(98)`

B

`2^(99)`

C

`-2^(99)`

D

`2^(100)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams (Assertion -Reason Type)|2 Videos
  • BINOMIAL THEOREM

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams|1 Videos
  • BINOMIAL DISTRUTION

    CHHAYA PUBLICATION|Exercise ASSERTION-REASON TYPE|2 Videos
  • CALCULUS

    CHHAYA PUBLICATION|Exercise JEE Advanced Archive (2014)|2 Videos

Similar Questions

Explore conceptually related problems

An equation a_(0)+a_(1)x+a_(2)x^(2)+....+a_(99)x^(99)+x^(100)=0" has roots "^(99)C_(0),^(99)C_(1),^(99)C_(2),...,^(99)C_(99) The value of a_(98) is -

An equation a_(0) + a_(2)x^(2) + "……" + a_(99)x^(99) + x^(100) = 0 has roots .^(99)C_(0), .^(99)C_(1), ^(99)C_(2), "…..", .^(99)C_(99) The value of (.^(99)C_(0))^(2) + (.^(99)C_(1))^(2) + "….." + (.^(99)C_(99))^(2) is equal to

An equation a_0+a_1x+a_2x^2+...............+a_99x^99+x^100=0 has roots .^(99)C_0 ,.^(99)C_1,.^(99)C_2....^(99)C_99 . Find the value of a_99 .

Let (1+x+x^(2))^(9)=a_(0)+a_(1)x+a_(2)x^(2)+.....+a_(18)x^(18) . Then

Let (1+x+x^(2))^(9)=a_(0)+a_(1)x+a_(2)x^(2)+......+a_(18)x^(18) . Then

If (1+x+x^(2))^(25)=a_(0)+a_(1)x+a_(2)x^(2)+...+a_(50).x^(50) , then a_(0)+a_(2)+a_(4)+....+a_(50) is

Find the derivative of 99x at x = l00.

If (1+x) ^(15) =a_(0) +a_(1) x +a_(2) x ^(2) +…+ a_(15) x ^(15), then the value of sum_(r=1) ^(15) r . (a_(r))/(a _(r-1)) is-

Prove that function y=(x-a_(1))^(2)+(x-a_(2))^(2)+...+(x-a_(n))^(2) is minimum when x=(1)/(n)(a_(1)+a_(2)+...+a_(n)) .

Equation x^(n)-1=0, ngt1, n in N," has roots "1,a_(1),a_(2),…,a_(n-1). The value of overset(n-1)underset(r=1)sum(1)/(2-a_(r)) is