Home
Class 12
MATHS
Find the ratio in which the line segment...

Find the ratio in which the line segment joining the points `(2,1,3)` and `(1,-3,-4)` is divided by the plane `3x-2y-3z=3`. Also find the coordinates of the point of division.

Text Solution

Verified by Experts

The correct Answer is:
`=(22/13,-3/13,11/13)`

NA
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the ratio in which the line-segment joining the points ( 2, 1 , 3) and (1 , -3 , -4) is divided by the plane 3 x - 2y - 3z = 3 . Also find the coordinates of the point of division.

The ratio in which the line-segment joining the points (2,-3, -5) and(7,1,3) is divided by the xy-plane is-

Find the ratio in which the line -segment joining the points ( 2 , 0 , -4) and ( - 4 2 , 6) is divided by the xy - plane. . Also find the coordinates of the point of division .

Find the ratio in which the line segment joining the points (-3, 10) and (6, -8) is divided by (-1, 6) .

The ratio in which the line segment joining the points (1, 2, 3) and (-3, 4, -5) is divided by the xy -plane is -

Find the ratio in which the line segment joining the points (-3, 10) and (6, -8) is divided by (-1, 6).

Find the ratio in which the segment joining the points (5,6) and (2,-3) is divided by Y -axis

Find the ratio in which the segment joining the points (5,6) and (2,-3) is divided by X -axis

Find the ratio in which the line segment joining the pionts A (3, -3) and B (-2, 7) is divided by x-axis. Also, find the coordinates of the point of division.

The ratio in which the line-segment joining the points ( 2 , - 3, 4) and ( 3 , 4 , - 1) is divided by the zx-plane is _