Home
Class 12
MATHS
If underset(x rarr 3)lim (x^(n) - 3^(n))...

If `underset(x rarr 3)lim (x^(n) - 3^(n))/(x-3) = 27n`, then the value of n is -

A

3

B

2

C

4

D

5

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • CALCULUS

    CHHAYA PUBLICATION|Exercise WBHS Archive (2015)|6 Videos
  • CALCULUS

    CHHAYA PUBLICATION|Exercise WBHS Archive (2016)|7 Videos
  • CALCULUS

    CHHAYA PUBLICATION|Exercise WBHS Archive (2013)|5 Videos
  • BINOMIAL THEOREM

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams (Assertion -Reason Type)|2 Videos
  • CIRCLE

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams (E. Assertion-Reason Type)|2 Videos

Similar Questions

Explore conceptually related problems

If lim_(xrarr3)(x^n3^n)/(x-3)=27n ,then the value of n is

If lim_(xrarr3)(x^n-3^n)/(x-3)=108 ,then the value of n is

underset(xrarr3)"lim"(x^(3)-27)/(x^(2)-9)= ?

Show : underset(xrarr2)"lim"((1+x)^(n)-3^(n))/(x-2)=n.3^(n-1)

If underset(xrarr0)"lim" (tanx-sinx)/(x^(3))=(M)/(N) , then value of N (when M =3 ) is equal to -

underset(xrarr1)"lim"(x+x^(2)+x^(3)+.....+x^(n)-n)/(x-1) =

If lim_(x->2)(x^n-2^n)/(x-2)=80 and n in N ,then find the value of n.

Starting from underset(xrarra)"lim"(x^(n)-a^(n))/(x-a)=na^(n-1)" deduce that ," underset(xrarr0)"lim"((1+x)^(n)-1)/(x)=n.

If (n+3)! =56 x (n+1)!, Find the value of n.

If lim_(xrarr0)(tanx-sinx)/x^3=M/N and M = 3, then the value of N is