Home
Class 12
MATHS
Prove that underset(x rarr 0)lim (log(1+...

Prove that `underset(x rarr 0)lim (log(1+x)+sinx)/(e^x-1) =2`

Promotional Banner

Topper's Solved these Questions

  • CALCULUS

    CHHAYA PUBLICATION|Exercise WBHS Archive (2016)|7 Videos
  • CALCULUS

    CHHAYA PUBLICATION|Exercise WBJEE Archive (2013)|2 Videos
  • CALCULUS

    CHHAYA PUBLICATION|Exercise WBHS Archive (2014)|6 Videos
  • BINOMIAL THEOREM

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams (Assertion -Reason Type)|2 Videos
  • CIRCLE

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams (E. Assertion-Reason Type)|2 Videos

Similar Questions

Explore conceptually related problems

Prove that underset(xrarroo)"lim"(1)/(x)=0 .

underset(xrarr0)"lim"(log(1+4x))/(x) =

Prove that: lim_(x rarr 0) (log(1+x)+sinx)/(e^(x)-1)=2

Prove that: underset(x rarr0)lim ((x-1+cosx)/(x))^(1/x) = e^(-1/2)

Prove : underset(xrarr0)"lim"(sinlog(1+x))/(e^(x)-1)=1

Prove that: underset(xrarr0)lim [1+3x]^((x+3)/x = e^9

Evaluate: underset(x rarr 0)lim(log_e(1+alphax)/(e^(2x)-1))

Prove : underset(xrarr0)"lim"((1)/(sinx)-(1)/(tanx))=0

Evaluate underset(xrarr0)(lim)(sinx+log(1-x))/(x^2)

Prove : underset(xrarroo)"lim"(sinx)/(x)=0