Home
Class 12
MATHS
If f(x)=sin x , g(x)=x^(2) and h(x)=logx...

If f(x)=sin x , g(x)`=x^(2)` and h(x)=logx, find the composite function [h o (g o f)](x).

Text Solution

Verified by Experts

The correct Answer is:
2 log(sinx)
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = sin x, g(x) = x^2 and h(x), = logx , find the composite function[ho(gof)](x).

If f(x)=sinx, g(x)=x^2 and h(x)=log x, find h[g{f(x)}].

Let the functions f: RR rarr RR , g: RR rarr RR and h: RR rarr RR by given by, f(x)= cos x, g(x)=2x+1 and h(x)=x^(3)-x-6 Find the value of the product function h o (g o f) and hence compute [h o (g o )]((pi)/(3)) .

Let RR be the set of real numbers and f: RR rarr RR, g: RR rarr RR, h: RR rarr RR be defined by , f(x) =sin x, g(x)=3x -1, h(x)=x^(2)-4 .Find the formula which defines the product function h o (g o f) and hence compute [h o( g o f)] ((pi)/(2))

If f(x) = e^(x + a) , g(x) = x^(b^2) and h(x) = e^(b^2 x) , then find the value of (g{f(x)})/(h(x))

If f(x)=e^(x+a),g(x)=x^(b^2)and h(x)=e^(b^2x), find the value of (g[f(x)])/(h(x)).

If f(x)= sin^(2)x and g(f(x))=|sin x|, then g(x)=

Let the function f : R to R , g : R to R , h : R to R be defined by f(x) = cos x,g(x) = 2x+1 and h(x) = x^(3)-x-6 , Find the mapping h o (go h) , hence find the value of h o (go f), hence find the value of ( h o (go f) ) (x) when x=(pi)/(3) and c=(2pi)/(3).

Let the function f: RR rarr RR and g: RR rarr RR be defined by, f(x) =x^(2)-4x+3 and g(x)=3x-2 . Find formulas which define the composite functions (i) f o f (ii) g o g (iii) f o g and (iv) g o f

If f(x) = 2x + |x|, g(x) = 1/3(2x - |x|) and h(x) = f(g(x)), then find the domain of sin^(1-)(h(h(h(h...h(x)...))))/(n "times")