Home
Class 12
MATHS
Prove that underset(r=1)overset(n)sum ...

Prove that
`underset(r=1)overset(n)sum "tan"^(-1)(1)/(1+r+r^(2))="tan"^(-1)(n+1)-(x)/(4)-(pi)/(4)`, hence deduce that, `underset(n=1)overset(oo) sum "tan"^(-1)(1)/(1+n+n^(2))=(pi)/(4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that underset(r=1)overset(n)sum "tan"^(-1)(2r)/(r^(4)+r^(2)+2)="tan"^(-1)(n^(2)+n+1)-(pi)/(4)

Prove that, underset(n=1)overset(oo)sum cot^(-1)(2n^(2))=(pi)/(4)

Find the value of underset(r = 0) overset(oo)sum tan^(-1) ((1)/(1 + r + r^(2)))

Prove that sum_(r=1)^(n) tan^(-1) ((2^(r -1))/(1 + 2^(2r -1))) = tan^(-1) (2^(n)) - (pi)/(4)

The limit of underset(n=1)overset(1000)sum(-1)^(n)x^(n)" as "x to oo

The value of underset(n=1)overset(13)sum(i^(n)+i^(n-1)),=i=sqrt(-1) is -

The sum of the series underset(n+1)overset(oo)sumsin((n!pi)/(720)) is -

Find the value of underset(r = 1)overset(10)sum underset(s = 1)overset(10)sum tan^(-1) ((r)/(s))

Prove that: sum_(m=1)^ntan^(-1)((2m)/(m^4+m^2+2))=tan^(-1)((n^2+n)/(n^2+n+2))

i^(2)=-1,"then"underset(n=0)overset(225)sumi^(n) is -