Home
Class 12
MATHS
Prove that underset(r=1)overset(n)sum ...

Prove that
`underset(r=1)overset(n)sum "tan"^(-1)(2r)/(r^(4)+r^(2)+2)="tan"^(-1)(n^(2)+n+1)-(pi)/(4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that, underset(n=1)overset(oo)sum cot^(-1)(2n^(2))=(pi)/(4)

Find the value of underset(r = 0) overset(oo)sum tan^(-1) ((1)/(1 + r + r^(2)))

Prove that sum_(r=1)^(n) tan^(-1) ((2^(r -1))/(1 + 2^(2r -1))) = tan^(-1) (2^(n)) - (pi)/(4)

Find the sum sum_(r =1)^(oo) tan^(-1) ((2(2r -1))/(4 + r^(2) (r^(2) -2r + 1)))

Find the value of underset(r = 1)overset(10)sum underset(s = 1)overset(10)sum tan^(-1) ((r)/(s))

Prove that underset(rles)(underset(r=0)overset(s)(sum)underset(s=1)overset(n)(sum))""^(n)C_(s) ""^(s)C_(r)=3^(n)-1 .

Prove that sum_(r=0)^(2n) r.(""^(2n)C_(r))^(2)= 2n.""^(4n-1)C_(2n-1) .

Prove that sum_(r=0)^(n) ""^(n)C_(r).(n-r)cos((2rpi)/(n)) = - n.2^(n-1).cos^(n)'(pi)/(n) .

Evaluate : underset (nrarrinfty)lim underset(r=0)overset(n-1)sum 1/sqrt(4n^2-r^2)

Evaluate : underset(n to oo)lim(1)/(n)["tan"(pi)/(4n)+"tan"(2pi)/(4n)+"tan"(3pi)/(4n)+…+ "tan"(npi)/(4n)]