Home
Class 12
MATHS
Evaluate : cos^(-1)x+cos^(-1)[(x)/(2)+(s...

Evaluate : `cos^(-1)x+cos^(-1)[(x)/(2)+(sqrt(3-3x^(2)))/(2)]((1)/(2) le x le 1)`

Text Solution

Verified by Experts

The correct Answer is:
`(pi)/(3)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : cos^(-1) x + cos^(-1) ((x)/(2) + (sqrt( 3-3x^2) )/( 2) ) = (pi)/ (3)

Evaluate: int(2x-sqrt(cos^(-1)x))/(sqrt(1-x^2))dxdot

Find the derivatives w.r.t. x : cos^(-1)x+cos^(-1)sqrt(1-x^(2))

Evaluate : int(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x))dx[0 le x le 1]

Prove that cos^(-1) {sqrt((1 + x)/(2))} = (cos^(-1) x)/(2) , -1 lt x lt 1

tan ^(-1) ""sqrt(x) =(1)/(2) cos^(-1) ""(1-x)/(1+x) , 0 le x le 1

Find the range of f(x)=cos^(-1)((sqrt(1+2x^2))/(1+x^2))

The number of solutions of 2 cos ^(2) (x/2) sin ^(2)x =x^(2)+(1)/(x^(2)) in 0 le x le (pi)/(2) is-

4 cos^(2)x + sqrt(3) = 2(sqrt(3)+1)

Integrate : int "cos"^(-1)(1-x^(2))/(1+x^(2))dx(0 le x le alpha)