Home
Class 12
MATHS
Prove that : "cos"^(-1)sqrt((2)/(3))-"...

Prove that :
`"cos"^(-1)sqrt((2)/(3))-"cos"^(-1)(sqrt(6)+1)/(2sqrt(3))=(pi)/(6)`

Answer

Step by step text solution for Prove that : "cos"^(-1)sqrt((2)/(3))-"cos"^(-1)(sqrt(6)+1)/(2sqrt(3))=(pi)/(6) by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

The value of cos^(-1)sqrt(2/3)-cos^(-1)((sqrt(6)+1)/(2sqrt(3))) is equal to (A) pi/3 (B) pi/4 (C) pi/2 (D) pi/6

sin cos^(-1) ""((-sqrt(3))/(2))

cos sin ^(-1)(-(sqrt(3))/(2))

cos ^(-1)"" (1)/(sqrt(5))+ cos ^(-1) ""(2)/(sqrt(5))=(pi)/(2)

cos^(-1)""(2)/(sqrt(5))+sin ^(-1)""(1)/(sqrt(10))=(pi)/(4)

Prove that : cos^(-1) x + cos^(-1) ((x)/(2) + (sqrt( 3-3x^2) )/( 2) ) = (pi)/ (3)

4 cos^(2)x + sqrt(3) = 2(sqrt(3)+1)

Prove that, 2 "sin"^(-1)(2)/(sqrt(13))+(1)/(2) "cos"^(-1)(7)/(25)+"tan"^(-1)(63)/(16)=pi

If (1)/(sqrt2) lt x lt 1 , then prove that cos^(-1) x + cos^(-1) ((x + sqrt(1 - x^(2)))/(sqrt2)) = (pi)/(4)

The value of sin ^(-1)""((sqrt(3))/(2))+cos^(-1)""(-(sqrt(3))/(2)) is -