Answer
Step by step text solution for Prove that : "cos"^(-1)sqrt((2)/(3))-"cos"^(-1)(sqrt(6)+1)/(2sqrt(3))=(pi)/(6) by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.
|
Similar Questions
Explore conceptually related problems
Recommended Questions
- Prove that : "cos"^(-1)sqrt((2)/(3))-"cos"^(-1)(sqrt(6)+1)/(2sqrt(3)...
05:51
|
Playing Now - cos {cos ^ (- 1) ((- sqrt (3)) / (2)) + (pi) / (6)}
01:09
|
Play - The value of cos^(-1)sqrt(2/3)-cos^(-1)((sqrt(6)+1)/(2sqrt(3))) is equ...
01:51
|
Play - the value of cos^(-1)sqrt((2)/(3))-cos^(-1)((sqrt(6)+1)/(2sqrt(3))) is...
03:22
|
Play - The value of sin(sin^-1 (1/2)+ cos ^-1 (1/3)) is equal to (A) (sqrt(3)...
01:46
|
Play - Evaluate that : cos[cos^(-1) (sqrt(3)/2) + pi/6]
01:03
|
Play - सिद्ध कीजिए कि - cos[(pi)/(6)+cos^(-1)(-(sqrt(3))/(2))]=-1
01:47
|
Play - cos[cos^(-1) ((sqrt(3))/(2))+(pi)/(6)] ज्ञात करें
00:52
|
Play - cos [ cos^(-1)(-sqrt(3)/(2))+ (pi)/(6)] का मान ज्ञात कीजिए |
01:31
|
Play