Home
Class 12
MATHS
Prove that : cos^(-1)b-sin^(-1)a=cos^(...

Prove that :
`cos^(-1)b-sin^(-1)a=cos^(-1)(bsqrt(1-a^(2))+asqrt(1-b^(2)))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos^(-1)x=2sin^(-1)(sqrt (1-x)/sqrt2)

Prove that 2cos^(-1)x=sin^(-1)(2xsqrt(1-x^2))

If x<0, then prove that cos^(-1)x=pi-sin^(-1)sqrt(1-x^2)

Prove that: cosec(tan^(-1)("cos"(cot^(-1)("sec"(sin^(-1)a)))))=sqrt(3-a^2), where a in [0,1]

Prove that, {cos(sin^(-1)x)}^2 = {sin(cos^(-1)x)}^2 .

prove that cos tan ^(-1) ""sin cot ^(-1) ""x=((x^(2)+1)/(x^(2)+2))^(1/2)

Prove that , (sin2x)/(1+cos2x)=tanx

prove that , sin ^(-1) cos sin ^(-1 )x+cos ^(-1) sin cos ^(-1) ""x=(pi)/(2)

prove that sin^(-1) cos sin^(-1)x + cos^(-1) sin cos^(-1)x = pi /2

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x = (pi)/(2), |x| le 1