Home
Class 12
MATHS
Prove that, |{:((b+c)^(2),c^(2),b^(2))...

Prove that,
`|{:((b+c)^(2),c^(2),b^(2)),(c^(2),(c+a)^(2),a^(2)),(b^(2),a^(2),(a+b)^(2)):}|=2(bc+ca+ab)^(3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Using properties of determinants prove that, |{:((b+c)^(2),a^(2),a^(2)),(b^(2),(c+a)^(2),b^(2)),(c^(2),c^(2),(a+b)^(2)):}|=2abc(a+b+c)^(3)

Prove that {:|( a^(2) , bc, ac+c^(2)),( a^(2) +ab,b^(2) ,ac),( ab,b^(2) +bc,c^(2)) |:} =4a^(2) b^(2) c^(2)

Using properties of determinants , prove that, |{:(a,b,c),(b,c,a),(c,a,b):}|=-(a^3+b^3+c^3-3abc) and hence show that, |{:(2bc-a^2," "c^2," "b^2),(" "c^2,2ca-b^2," "a^2),(" "b^2," "a^2,2ab-c^2):}|=(a^3+b^3+c^3-3abc)^2

If a^(2) + b^(2) + c^(2) + ab + bc + ca le 0 for all, a, b, c in R , then the value of the determinant |((a + b +2)^(2),a^(2) + b^(2),1),(1,(b +c + 2)^(2),b^(2) + c^(2)),(c^(2) + a^(2),1,(c +a +2)^(2))| , is equal to

Prove that: |[(b+c)^2,a^2,a^2],[b^2,(c+a)^2,b^2],[c^2,c^2,(a+b)^2]|=2a b c(a+b+c)^3

Prove that ((a^(2)-b^(2))^(3)+(b^(2)-c^(2))^(3)+(c^(2)-a^(2))^(3))/((a-b)^(3)+(b-c)^(3)+(c-a)^(3))=(a+b)(b+c)(c+a)

Show that |{:(a^(2)+1,ab,ac),(ab,b^(2)+1,bc),(ca,bc,c^(2)+1):}|=1+a^(2)+b^(2)+c^(2)

prove that, |{:(""-bc ,b^2+bc,c^2+bc),(a^2+ac," "-ac,c^2+ac),(a^2+ab,b^2+ab," "-ab):}|=(ab+bc+ca)^3

|{:(a^2,a^2-(b-c)^2,bc),(b^2,b^2-(c-a)^2,ca),(c^2,c^2-(a-b)^2,ab):}|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)

Prove that bc cos^(2).(A)/(2) + ca cos^(2).(B)/(2) + ab cos^(2).(C)/(2) = s^(2)