Home
Class 12
MATHS
Prove that, |{:(sin^(3)A,cosA,sinA),(s...

Prove that,
`|{:(sin^(3)A,cosA,sinA),(sin^(3)B,cosB,sinB),(sin^(3)C,cosC,sinC):}|`
=sin(A-B)sin(B-C)sin(C-A)sin(A+B+C).

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that, |[sin A, cosA, sin(A+theta)],[sinB, cosB, sin(B+theta)],[sinC, cosc, sin(C+theta)]| =0

prove that , |{:(sin A ,cos A,sin (A+theta)),(sin B ,cos B,sin (B+theta)),(sin C ,cos C ,sin (C+theta)):}|=0

Prove that (sin3A+sinA)sinA+(cos3A-cosA)cosA=0

(iv) a sin (B-C) + b sin(C-A) + c sin (A-B)=0

In a DeltaABC,sinA/sinC=sin(A-B)/sin(B-C) then

Prove that: (sin(B-C))/(cosBcosC)+(sin(C-A))/(cosCcosA)+(sin(A-B))/(cosAcosB)=0

Show that 4 sin A sin Bsin C = sin(A+B-C) + sin (B+C-A) + sin(C+A-B)-sin(A+B+C).

Prove that (sin A+sinB)/(cosB-cosA)=(cos A+cosB)/(sinA-sinB) .

Show that (1+sinA)/(cosA)+(cosB)/(1-sinB)=(2sinA-2sinB)/(sin(A-B)+cosA-cosB)

(xiii) a^(3) sin (B-C) + b^(3) sin (C-A) + c^(3) sin(A-B)=0