Home
Class 12
MATHS
Prove that, [{:(-bc,b^(2)+bc,c^(2)+bc)...

Prove that,
`[{:(-bc,b^(2)+bc,c^(2)+bc),(a^(2)+ac,-ac,c^(2)+ac),(a^(2)+ab,b^(2)+ab,-ab):}]=(ab+bc+ca)^(3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

prove that, |{:(""-bc ,b^2+bc,c^2+bc),(a^2+ac," "-ac,c^2+ac),(a^2+ab,b^2+ab," "-ab):}|=(ab+bc+ca)^3

Prove that {:|( a^(2) , bc, ac+c^(2)),( a^(2) +ab,b^(2) ,ac),( ab,b^(2) +bc,c^(2)) |:} =4a^(2) b^(2) c^(2)

Prove that, |{:((b+c)^(2),c^(2),b^(2)),(c^(2),(c+a)^(2),a^(2)),(b^(2),a^(2),(a+b)^(2)):}|=2(bc+ca+ab)^(3)

Without expanding the determinant, prove that {:|( a, a ^(2), bc ),( b ,b ^(2) , ca),( c, c ^(2) , ab ) |:} ={:|( 1, a^(2) , a^(3) ),( 1,b^(2) , b^(3) ),( 1, c^(2),c^(3)) |:}

Prove that, abs((-a^2,ab,ac),(ba,-b^2,bc),(ca,cb,-c^2)) =4 a^2b^2c^2 .

Show that |{:(a^(2)+1,ab,ac),(ab,b^(2)+1,bc),(ca,bc,c^(2)+1):}|=1+a^(2)+b^(2)+c^(2)

Prove that the points (a,bc-a^(2)),(b,ca-b^(2)),(c,ab-c^(2)) are collinear.

Prove that [[a^2,bc,c^2+ca],[a^2+ab,b^2,ca],[ab,b^2+bc,c^2]]= 4a^2b^2c^2 .

Prove that bc cos^(2).(A)/(2) + ca cos^(2).(B)/(2) + ab cos^(2).(C)/(2) = s^(2)

Prove that, abs((a^2+1,ab,ac),(ab,b^2+1,bc),(ca,cb,c^2+1)) =1+ a^2+b^2+c^2 .