Home
Class 12
MATHS
Find (dy)/(dx), when y=(x log x)^(log(...

Find `(dy)/(dx)`, when
`y=(x log x)^(log(logx))`

Text Solution

Verified by Experts

The correct Answer is:
`(x log x)^(log(log)-1)[log(x logx)+(1+logx)log(logx)]`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when y= log f(x)

Find (dy)/(dx) , when y=(sinx)/(logx)

Find (dy)/(dx) , when y=log|x|

Find (dy)/(dx) , when y=(logx)^(x)+x^(logx)

Find (dy)/(dx) , when y= (sin x)^(log x)

Find (dy)/(dx) , when y=log_(cosx)x

Find (dy)/(dx) , when y = sqrt(x) log x* 10^(x)

Find (dy)/(dx) when : log(xy)=e^(x+y)+2

Find (dy)/(dx) , when y=log("tan"(x)/(2))

Find (dy)/(dx) , a sin (xy)+b log y=c