Home
Class 12
MATHS
Find (dy)/(dx), when y="tan"^(-1)(sqrt...

Find `(dy)/(dx)`, when
`y="tan"^(-1)(sqrt(x)-4sqrt(x))/(1+4sqrt(x^(3)))`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(2(1+x)sqrt(x))+(1)/(4(1+sqrt(x))^(4)sqrt(x^(3)))`
Promotional Banner

Similar Questions

Explore conceptually related problems

int (sqrt(x)dx)/(1+4sqrt(x^(3))

Find (dy)/(dx) when : y= 2 tan^(-1) sqrt((x-a)/(b-x))

Find (dy)/(dx) , when y=log_(10)(sqrt(x-a)+sqrt(x-b))

Find (dy)/(dx) when : y=sin[2 tan^(-1) sqrt((1-x)/(1+x))]

Find (dy)/(dx) , when y= x^(x) sin sqrt(x)

Find (dy)/(dx) , when y="tan"^(-1)(x)/(1+sqrt(1-x^(2)))+sin(2 tan^(-1)sqrt((1-x)/(1+x)))

Find (dy)/(dx) when : y=x^(3)* sqrt((x^(2)+4)/(x^(2)+3))

Find (dy)/(dx) , when y=cos^(3) log(x tan sqrt(x))

Find (dy)/(dx) when : y="sin"^(-1) (1)/(sqrt(1+x^(2)))+tan^(-1) ( (sqrt(1+x^(2))-1)/(x))

Find (dy)/(dx) when : y= tan^(-1)[sqrt((a-b)/(a+b))"tan"(x)/(2)]