Home
Class 12
MATHS
Find (dy)/(dx), when y="tan"^(-1)(x)/(...

Find `(dy)/(dx)`, when
`y="tan"^(-1)(x)/(1+sqrt(1-x^(2)))+sin(2 tan^(-1)sqrt((1-x)/(1+x)))`

Text Solution

Verified by Experts

The correct Answer is:
`(1-2x)/(2sqrt(1-x^(2))`
Promotional Banner

Similar Questions

Explore conceptually related problems

y=tan^(-1)(x/(1+sqrt(1-x^2))) find dy/dx

Find (dy)/(dx) when : y="sin"^(-1) (1)/(sqrt(1+x^(2)))+tan^(-1) ( (sqrt(1+x^(2))-1)/(x))

Simplify y=tan^(-1)(x/(1+sqrt(1-x^2)))

Find (dy)/(dx) when : y=sin[2 tan^(-1) sqrt((1-x)/(1+x))]

Find (dy)/(dx) when : y= 2 tan^(-1) sqrt((x-a)/(b-x))

Find (dy)/(dx) , when y="tan"^(-1)(sqrt(x)-4sqrt(x))/(1+4sqrt(x^(3)))

Differentiate tan^(-1)(x/(1+sqrt((1-x^2)))) +{2tan^(-1)sqrt(((1-x)/(1+x)))} w.r.t. x

Find (dy)/(dx) when : y= tan^(-1)[sqrt((a-b)/(a+b))"tan"(x)/(2)]

Find (dy)/(dx) when : tan^(2)y=(1+cos 2x)/(1-cos2x)

tan^(-1)x+tan^(-1) (1-x) = 2 tan ^(-1) sqrt(x(1-x))