Home
Class 12
MATHS
If x^(logy)=logx, prove that, (x)/(y).(d...

If `x^(logy)=logx`, prove that, `(x)/(y).(dy)/(dx)=(1-logx log y)/((log x)^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

x(dy)/(dx)=y(logy-logx-1)

If y log x= x-y , prove that (dy)/(dx)= (log x)/((1+log x)^(2))

If x^(y) =e^(x-y) , prve that , (dy)/(dx) =(logx)/((log ex)^(2)) .

(dy)/(dx)=(cos(logx))/(log_(e)y)

If y=x^(y^(x)) , prove that, (dy)/(dx)=(y log y(1+x logx log y))/(x logx(1-x logy)) .

If y^(x)=e^(y-x)" prove that, " (dy)/(dx)=((logey)^(2))/(log y) .

int[log(logx)+(1)/((logx)^(2))]dx

If y=(logx)^((logx)^((logx)^(....oo))) prove that, xlogx(dy)/(dx)=(y^(2))/(1-y log(logx))

Solve x((dy)/(dx))=y(logy-logx+1)

If y= x^(y^x) , prove that y_1 = (ylogy(1+x logx logy)/(x log x (1-xlogy))