Home
Class 12
MATHS
If sqrt(1-x^(2n))+sqrt(1-y^(2n))=a^(n)(x...

If `sqrt(1-x^(2n))+sqrt(1-y^(2n))=a^(n)(x^(n)-y^(n))`, prove that,
`(dy)/(dx)=((x)/(y))^(n-1).sqrt((1-y^(2n))/(1-x^(2n))`

Promotional Banner

Similar Questions

Explore conceptually related problems

(x^(2^n)-y^(2^n))/(x^(2^(n-1))+y^(2^(n-1)))=

If sqrt(1-x^2)+sqrt(1-y^2)=a(x-y) ,show that dy/dx=sqrt((1-y^2)/(1-x^2))

(x^(2^(n-1))+y^(2^(n-1)))(x^(2^(n-1))-y^(2^(n-1)))=

If y=((1+x)/(1-x))^(n) , prove that (1-x^(2))(d^(2)y)/(dx^(2))=2(n+x)(dy)/(dx).

if y = (x+sqrt(x^2+a^2))^n then prove that (dy)/(dx)= (ny)/(sqrt(x^2+a^2)

If cos^(-1)((y)/(b))=log((x)/(n))^(n) , prove that, x^(2)y_(2)+xy_(1)+n^(2)y=0 .

If y=x^(n-1)logx , Prove that, x^2(d^2y)/(dx^2)+(3-2n)xdy/dx+(n-1)^2y=0

If y = sqrt(x) + (1)/(sqrt(x)) prove that 2x(dy)/(dx) + y = 2sqrt(x)

If y=1+x/(1!)+(x^2)/(2!)+(x^3)/(3!)++(x^n)/(n !), show that (dy)/(dx)-y+(x^n)/(n !)=0.

If U_n=(sqrt(3)+1)^(2n)+(sqrt(3)-1)^(2n) , then prove that U_(n+1)=8U_n-4U_(n-1)dot