Home
Class 12
MATHS
If y=(1)/(3)"log" (x+1)/(sqrt(x^(2)-x+1)...

If `y=(1)/(3)"log" (x+1)/(sqrt(x^(2)-x+1))+(1)/(sqrt(3))"tan"^(-1)(2x-1)/(sqrt(3))`, show that,
`(dy)/(dx)=(1)/(x^(3)+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(1)^(2)(dx)/((x+1)sqrt(x^(2)-1))=(1)/(sqrt(3))

If y="tan"^(-1) (sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2))) show that, (dy)/(dx)=(x)/(sqrt(1-x^(4)))

If y=(x)/(sqrt(1+x^(2))) , prove that, x^(3)(dy)/(dx)=y^(3) .

If x=sqrt(a^(sin^(-1)t)), y= sqrt(a^(cos^(-1)t)) , show that (dy)/(dx)= -(y)/(x) .

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y) , show that, (dy)/(dx)=(sqrt(1-y^(2)))/(sqrt(1-x^(2))) .

If x=sqrt(a^(sin^(-1)t)" and "y=sqrt(a^(cos^(-1)t) show that (dy)/(dx)=-(y)/(x) .

If y="cot"^(-1) (sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)) , show that [(dy)/(dx)]_(x=(1)/(2))= -(1)/(sqrt(3)) .

If y = tan^(-1) ((sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))) show that (dy)/(dx) = x/sqrt(1-x^4) .

y=tan^(-1) ((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)) show that dy/dx=1/(2sqrt(1-x^2))

If y=tan^(-1)((3x-x^3)/(1-3x^2)),-1/(sqrt(3))ltxlt1 /(sqrt(3)), then find (dy)/(dx)