Home
Class 12
MATHS
Find the value of (dy)/(dx) in the simpl...

Find the value of `(dy)/(dx)` in the simplest form when
`y=(1)/(4sqrt(2))"log"(1+xsqrt(2)+x^(2))/(1-xsqrt(2)+x^(2))+(1)/(2sqrt(2))"tan"^(-1)(xsqrt(2))/(1-x^(2))`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(1+x^(4))`
Promotional Banner

Similar Questions

Explore conceptually related problems

int(d(x^(2)-1))/(xsqrt(2-x^(2)))

int_(sqrt(2))^(2)(dx)/(xsqrt(x^(2)-1))

xsqrt(y^(2)-1)dx-ysqrt(x^(2)-1)dy=0

int(sqrt(1-x^(2))-x)/(sqrt(1-x^(2))(1+xsqrt(1-x^(2))))dx is

int (1+x^(2))/(1-x^(2)).(dx)/(sqrt(1+x^(4)))=(1)/(sqrt(2))log|(sqrt(1+x^(4))+xsqrt(2))/(1-x^(2))|+c

int ((x^(2)-1)dx)/(xsqrt(x^(4)+1))

If y=(1)/(3)"log" (x+1)/(sqrt(x^(2)-x+1))+(1)/(sqrt(3))"tan"^(-1)(2x-1)/(sqrt(3)) , show that, (dy)/(dx)=(1)/(x^(3)+1)

Find (dy)/(dx) in the following : y= sin^(-1) (2x sqrt(1-x^(2))), (-1)/(sqrt(2)) lt x lt (1)/(sqrt(2)) .

int_(0)^(a)xsqrt((a^(2)-x^(2))/(a^(2)+x^(2)))dx

int (dx)/(xsqrt(x^(2)+x+1))