Home
Class 12
MATHS
If y=(logx)^((logx)^((logx)^(....oo)))pr...

If `y=(logx)^((logx)^((logx)^(....oo)))`prove that,
`xlogx(dy)/(dx)=(y^(2))/(1-y log(logx))`

Promotional Banner

Similar Questions

Explore conceptually related problems

(dy)/(dx)=(cos(logx))/(log_(e)y)

int[log(logx)+(1)/((logx)^(2))]dx

Solve x((dy)/(dx))=y(logy-logx+1)

If y=x^((logx) then (dy)/(dx)=

x(dy)/(dx)=y(logy-logx-1)

If x^(logy)=logx , prove that, (x)/(y).(dy)/(dx)=(1-logx log y)/((log x)^(2))

If y=x^(y^(x)) , prove that, (dy)/(dx)=(y log y(1+x logx log y))/(x logx(1-x logy)) .

int_(1)^(e)(logx)^(2)dx

If x^(y) =e^(x-y) , prve that , (dy)/(dx) =(logx)/((log ex)^(2)) .

The I.F of x((dy)/(dx))+(logx)y=x^(-1/2logx) is