Home
Class 12
MATHS
From the relation sin x sin((pi)/(n)+x)s...

From the relation `sin x sin((pi)/(n)+x)sin((2pi)/(n)+x)….sin((n-1)/(n)pi+x)=(sin x)/(2^(n-1))` deduce that,
`cot x+cot((pi)/(n)+x)+cot((2pi)/(n)+x)+…+cot((n-1)/(n)pi+x)=n cot nx`.

Promotional Banner

Similar Questions

Explore conceptually related problems

tan ^(-1) (cot x) + cot ^(-1) (tan x) =(pi)/(4)

Find sin( (pi)/n)+sin ((3pi)/n)+sin ((5pi)/n)+…….. to n terms

cos ((3pi )/( 2 ) + x) cos (2pi + x) [cot ((3pi)/( 2)- x ) + cot (2pi +x) ]=1

(cos (pi +x) cos (-x))/( sin (pi -x) cos ((pi )/(2) + x))= cot ^(2) x

tan^(-1) (cot x) +cot^(-1)(tan x) =pi -2x

Evaluate: lim_(n->oo)ncos(pi/(4n))sin(pi/(4n))

Show that sin(pi/n)+sin (3pi/n)+sin (5pi/n)+….n terms=0

int_(-(pi)/(2))^((pi)/(2))(dx)/(1+cot^(4)x)

Evaluate : underset(n to oo)lim (1)/(n)[sin (pi/(2n))+sin((2pi)/(2n))+sin((3pi)/(2n))+…+ sin((npi)/(2n))]

sin (n +1) x sin (n +2) x + cos (n +1) x cos (n +2) x = cos x