Home
Class 12
MATHS
If x=sin t sqrt(cos2t) and y=cos tsqrt(s...

If `x=sin t sqrt(cos2t)` and `y=cos tsqrt(sin2t)`, find `(dy)/(dx)` at `t=(pi)/(4)`.

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=a(cos t+t sin t) and y=a(sin t-t cos t)," find "(dy)/(dx) " at " t=(3pi)/(4)

If x=2 cos t+cos 2t and y=2 sin t-sin2t , then the value of (dy)/(dx) at t=(pi)/(4) is -

If x=(sin^(3)t)/(sqrt(cos 2t)) and y=(cos^(3)t)/( sqrt(cos 2t)) , show that (dy)/(dx)=0 at t=(pi)/(6) .

If x=a(cost+1/2logtan^2t) and y=asint then find (dy)/(dx) at t=pi/4

If x=sqrt( a^(sin^(-1)t)) and y=sqrt( a^(cos^(-1)t)) find dy/dx

int sqrt(2+ sin 3t) cos 3t dt

If x=t^(2) and y=log t , find (dy)/(dx) .

If x= e^(cos2t) and y = e^(sin2t) , then move that (dy)/(dx) = -(ylogx)/(xlogy) .

If x=a (cos t + t sin t) and y=a ( sin t- t cos t) , find (d^(2)y)/(dx^(2))

If x=a (cos t +t sin t)" and "y= a (sin t -t cos t) , find (d^(2)y)/(dx^(2)) .